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(Flashback) k-means

Final output: cluster centers, cluster assignment for every point
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Suggested way to pick initial cluster centers: "k-means++" method

(rough intuition: incrementally add centers; favor adding center far away
from centers chosen so far)



(Flashback)

When does k-means work well?

k-means is related to a generative model, which will help us
understand when k-means is expected to work well



Example: Generative Model

Think of flipping a coin
each outcome: heads or tails

Each outcome doesn't depend on any of the previous outcomes



Example: Generative Model

pressing a button
Think of +epi
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each outcome: 2D point

Each outcome doesn't depend on any of the previous outcomes



Gaussian Mixture Model (GMM)

Each point sampled independently from same distribution
(but what is this distribution?)



Example: GMM ftor 2D Data

Every point sampled independently from probability distribution below:

----------- This is the sum of two 2D
Gaussian distributions!
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Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png



Quick Reminder: 1D Gaussian
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This is a 1D Gaussian distribution

Image source: https://matthew-brett.github.io/teaching//smoothing_intro-3.hires.png



2D Gaussian

This is a 2D Gaussian distribution

Image source: https://i.stack.imgur.com/OIWce.png



Example: GMM for 2D Data

Every point sampled independently from probability distribution below:
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Example of a 2D probability distribution

Image source: https://www.intechopen.com/source/html/17742/media/image25.png



GMM: The General Case

A GMM is the sum of k different d-dimensional Gaussian distributions so
that the overall probability distribution looks like k mountains

e Each mountain corresponds to a different cluster

e Different mountains can have different peak heights

e One missing thing we haven't discussed yet:
different mountains can have different shapes



2D Gaussian Shape

In 1D, you can have a skinny Gaussian or a wide Gaussian

VAN

Less uncertainty More uncertainty

In 2D, you can more generally have ellipse-shaped Gaussians

Ellipse enables encoding
relationship between
variables

Can't have arbitrary
shapes

Top-down view of an example 2D Gaussian distribution

Image source: https://www.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels2013/
homework/assign5/a52dgauss.jpg



GMM: The General Case

A GMM is the sum of k different d-dimensional Gaussian distributions so
that the overall probability distribution looks like k mountains

e Each mountain corresponds to a different cluster

e Different mountains can have different peak heights

e Different mountains can have ditferent ellipse shapes
(captures correlation/”covariance” information)



Example: 1D GMM with 2 Clusters

Cluster ] Cluster 2
Probability of generating a Probability of generating a
ooint from cluster 1 = 0.5 point from cluster 2 = 0.5
Gaussian mean = =5 Gaussian mean = 5
Gaussian variance = 1 (GGaussian variance = 1

What do you think this looks like?



Example: 1D GMM with 2 Clusters

Cluster 1

Probability of generating a
ooint from cluster 1 = 0.5

Gaussian mean = =5

Gaussian variance = 1

Cluster 2

Probability of generating a
point from cluster 2 = 0.5

Gaussian mean =5

Gaussian variance = 1




Example: 1D GMM with 2 Clusters

Cluster ] Cluster 2
Probability of generating a Probability of generating a
point from cluster 1 = 0.7 point from cluster 2 = 0.3
Gaussian mean = =5 Gaussian mean = 5
Gaussian variance = 1 (GGaussian variance = 1

What do you think this looks like?



Example: 1D GMM with 2 Clusters

Cluster ] Cluster 2
Probability of generating a Probability of generating a
point from cluster 1 = 0.7 point from cluster 2 = 0.3
Gaussian mean = =5 Gaussian mean = 5
Gaussian variance = 1 (GGaussian variance = 1
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Example: 1D GMM with 2 Clusters

Cluster ] Cluster 2
Probability of generating a Probability of generating a
point from cluster 1 = 0.7 point from cluster 2 = 0.3
Gaussian mean = =5 Gaussian mean = 5
Gaussian variance = 1 (GGaussian variance = 1

How to generate 1D points from this GMM:

1. Flip biased coin (side 1 has probability 0.7, side 2 has probability 0.3)

et Z be the side that we got (it is either 1 or 2)

2.1t Z=1:sample 1 point from Gaussian mean -5, variance 1

t Z=2: sample 1 point from Gaussian mean 5, variance 1



Example: 1D GMM with 2 Clusters

Cluster ] Cluster 2
Probability of generating a Probability of generating a
point from cluster 1 = 0.7 point from cluster 2 = 0.3
Gaussian mean = =5 Gaussian mean = 5
Gaussian variance = 1 (GGaussian variance = 1

How to generate 1D points from this GMM:

1. Flip biased coin (side 1 has probability 0.7, side 2 has probability 0.3)

Let Z be the side that we got (it is either 1 or 2)

2. Sample 1 point from the Gaussian from cluster Z



Example: 1D GMM with 2 Clusters

Cluster 1 Cluster 2
Probability of generating a Probability of generating a
point from cluster 1 = m; point from cluster 2 = w5
Gaussian mean = g Gaussian mean = [
Gaussian variance = o7 Gaussian variance = o3

How to generate 1D points from this GMM:

1. Flip biased coin (side 1 has probability w1, side 2 has probability ms)

Let Z be the side that we got (it is either 1 or 2)

2. Sample 1 point from the Gaussian from cluster Z



Example: 1D GMM with k Clusters

Cluster 1 Cluster k
Probability of generating a Probability of generating a
point from cluster 1 = m point from cluster k =
Gaussian mean = g Gaussian mean = Ly
Gaussian variance = o7 Gaussian variance = o3

How to generate 1D points from this GMM:

1. Flip biased coin (side 1 has probability w1, ..., side k has probability )
Let Z be the side that we got (it is some value 1, ..., k)

2. Sample 1 point from the Gaussian from cluster Z



Example: 2D GMM with k Clusters

Cluster 1 Cluster k
Probability of generating a Probability of generating a
point from cluster 1 = m point from cluster k =
Gaussian mean = g Gaussian mean = Ly
GGaussian covariance = X4 (Gaussian covariance = X

How to generate 2D points from this GMM:

1. Flip biased coin (side 1 has probability w1, ..., side k has probability )
Let Z be the side that we got (it is some value 1, ..., k)

2. Sample 1 point from the Gaussian from cluster Z



Example: GMM with k Clusters

Cluster 1 Cluster k
Probability of generating a Probability of generating a
point from cluster 1 = m point from cluster k =
Gaussian mean = g Gaussian mean = Ly
GGaussian covariance = X4 (Gaussian covariance = X

How to generate points from this GMM:

1. Flip biased coin (side 1 has probability w1, ..., side k has probability )
Let Z be the side that we got (it is some value 1, ..., k)

2. Sample 1 point from the Gaussian from cluster Z



High-Level Idea ot GMM

e (enerative model that gives a hypothesized way in which data points
are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!



“All models are wrong, but some are useful.”

—George Box

Photo: “George E.P. Box, Professor Emeritus of Statistics, University of Wisconsin-
Madison” by DavidMCEddy is licensed under CC BY-SA 3.0



High-Level Idea ot GMM

Generative model that gives a hypothesized way in which data points
are generated

In reality, data are unlikely generated the same way!

In reality, data points might not even be independent!

Learning ("fitting") the parameters of a GMM
e Input: d-dimensional data points, your guess for k
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After learning a GMM:

* For any d-dimensional data point, can figure out probability of it
belonging to each of the clusters



# of clusters Distance function: Euclidean

— k<means

Step 0: Guess k Step 1: Guess where cluster centers are
We'll guess k = 2 ®
®_ o
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o g ¢
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o Example: choose k points
uniformly at random
® .‘ @ O (without replacement) to
S be initial guesses for
O O cluster centers

/->C|uster centers & cluster assignments

Repeat until:converger@e: no longer change

--------------

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)



k-means

Step 0: Guess k

Step 1: Guess where cluster centers are

Repeat until convergence:

Step 2: Assign each point to belong to the closest cluster

Step 3: Update cluster means (to be the center of mass per cluster)



(Rough Intuition) Learning a GMM

Step 0: Guess k

Step 1: Guess cluster probabilities, means, and covariances

Repeat until convergence:

Step 2: Compute probability of each point being in each of the k clusters

Step 3: Update cluster probabilities, means, and covariances accounting
for probabilities of each point belonging to each of the clusters



Clustering

Demo



